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[ Abstract] Objective: Kidney cancer is a group of cancers occurred in the kidney. Hypoxia is a condition characterized by insuffi-
cient oxygen supply in the body or specific organs. It has been proven to play an essential role in the pathogenesis and development of
various cancer. However, the roles and mechanisms of hypoxia in kidney cancer have not been investigated clearly. In this study, we
comprehensively analyzed the roles of hypoxia in kidney cancer. Methods: The RNA-Seq data of kidney cancer were downloaded from
TCGA dataset. The survival of patients with differentially expressed hypoxia-related genes was analyzed with the survival package. The
prognostic value of hypoxia-related genes was evaluated with univariate Cox regression analysis. The correlation of hypoxia-related genes
to immune cells infiltration and gene mutation in kidney cancer was assessed. We identified 7 hypoxia-related genes of kidney cancer,
with which we developed a hypoxia-related genes-based prognostic index using multivariate Cox regression analysis to establish the prog-
nostic model. Results: The high-risk group showed lower survival compared with the low-risk group. HRGPI was an independent pre-
dictor of kidney cancer, and it was associated with malignant stages. Hypoxia-related genes were correlated to activation of inflammatory
pathways , infiltration of inflammatory cells, and expression of inhibitory immune checkpoints, indicating that hypoxia was related to im-
mune response in kidney cancer. Lastly, we found that hypoxia was related to missense mutation in kidney cancer. Conclusion: Hy-
poxia is a risk factor of kidney cancer. It can be regarded as the prognostic indicator and therapeutic target for the treatment of kidney
cancer in the future.
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INTRODUCTION called kidney cancer''’. Almost 350,000 new cases of

kidney cancer are diagnosed every year in the world.

. . . ' ' ] )
A series of cancers occurred in the kidney can be This cancer is responsible for the 7" most common
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cancer, leading to 140,000 deaths every year'>'. The
risk factors of kidney cancer include obesity, hyperten-
sion, smoking, etc. Hematuria, lumbodynia, and
weight loss are typical symptoms of kidney cancer. Ac-
cording to histological features and molecular altera-
tions, the sub-types of kidney cancer involve clear cell
renal cell carcinoma ( ccRCC), papillary renal cell
carcinoma ( PRCC), chromophobe renal cell carcino-
ma (chRCC) , etc. The treatment of kidney cancer de-

pends on its sub-type and stage'’’.

Surgery, chemo-
therapy and radiotherapy are common strategies. In re-
cent decades, gene abnormalities have frequently been
identified to correlate with kidney cancer. Previous
studies have discovered that the Von Hippel - Lindau
(VHL) gene mutation occurred in most ccRCC pa-

") VHL mutation can up-regulate hypoxia-induc-

tients
ible factors ( HIFs). VHL tumor suppressor protein is
critical in the oxygen regulation of kidney cancer. Mu-
tation of other genes other than VHL,
TCEBI, SETD2 and PBRMI, were also involved in

developing and progressing kidney cancer’’. Thus,

including

gene alteration which could offer novel therapeutic tar-
gets should be investigated in the future.

Hypoxia is a condition characterized by insuffi-
cient oxygen supply in the body or specific organs. It
has been proven that hypoxia plays an important role in
the pathogenesis and development of cancer'®’. In the
tumor microenvironment ( TME) of hypoxia, the oxy-
gen concentration is often lower in tumor tissue than in
healthy tissue. Hypoxia also involves in extracellular
matrix remodeling and the metastasis of tumor' "', Hy-
poxia could influence the apoptosis and angiogenesis of
tumors by altering TME'®' | also induce the differentia-
tion and maturation of inflammatory cells such as mac-

rophages, dendritic cells in tumor tissue'’’.

Hypoxia
in TME includes 4 types, chronic, acute, anemic and
toxic hypoxia, which leads to different consequences of
tumor progression. Various proteins, including glucose
transporter, basic fibroblast growth factor, hypoxia-in-
ducible factor 1 ( HIF-1), are involved in effects of
hypoxia' ", Apart from pathogenesis and carcinogene-
sis, hypoxia is also conducive to cancer therapy resist-

ance. Specifically, hypoxia is responsible for chemore-

sistance by increasing the level of HIF-1'"". Tt also in-

duces radioresistance by activating HIF-1 signaling
pathway. HIF-1 could influence radiotherapy and
chemotherapy sensitivity in solid tumors by regulating
cell proliferation, metabolism, and apoptosis. Howev-
er, the roles and mechanisms of hypoxia in kidney
cancer have not been investigated clearly.

In this study, we have created a hypoxia-related
genes — based prognostic index ( HRGPI) for kidney
cancer based on a hypoxia landscape analysis. The
survival of patients with hypoxia-related genes is ana-
lyzed, and the HRGPI is further developed. We have
also calculated the correlation of hypoxia-related genes
to immune cells infiltration and gene mutation in kid-
ney cancer, and investigated the potential mechanisms
of hypoxia, as an independent biomarker, in the prog-

nosis of kidney cancer patients.

METHODS

Clinical samples and data acquirement

RNA-Seq and somatic mutation data of kidney
cancer, including ¢ccRCC, PRCC, and chRCC, as
well as clinical data of patients were acquired from TC-
GA dataset, comprising 893 tumor samples and 128
adjacent normal samples. A total of 820 tumor samples
were finally enrolled after deleting cases with survival
less than 90 days. Differentially expressed genes
(DEGs ) of kidney cancer were analyzed with the
Deseq2 package. Significant genes were defined as abs
(logFC) >1 and FDR <0.001. The data were then
analyzed with normalized FPKM ( Fragments Per Kilo-
base of transcript, per Million mapped reads) values,
and the batch effect was removed with the SVA pack-
age. Heatmaps and volcano plots of DEGs were pro-
duced with the R package. In addition, information of
transcript factors was downloaded from Cistrome ( ht-
tp://cistrome. org/), a bioinformatics platform for
transcriptional regulation studies. Differentially ex-
pressed transcription factors ( DETFs) were recognized
from DEGs. Spearman’s correlation analysis was used
to identify the correlation between DETFs and hypoxia-
related genes, with the Spearman’ s rank correlation
coefficient >0.5 and P <0. 05 for statistical signifi-
cance.
Prognostic analysis

The prognosis of patients with differentially ex-



. 994 . MR RG 5R97 2021 4F 11 H 55 34 4855 11 #] J Cancer Control Treat, November 2021, Vol. 34, No. 11

pressed hypoxia-related genes was analyzed with the
survival package. The prognostic value of hypoxia-re-
lated genes was evaluated with univariate Cox analysis.
Forest plots of hypoxia-related genes were described
with hazard ratio (HR).
Functional enrichment analysis

Functional enrichment analysis, including GO
(analyses on biological process, molecular function,
cellular component and biological process), KEGG,
and GSEA analyses, were conducted in this study. All
significant KEGG signaling pathways were visualized
with a bubble chart. GSEA analysis was used to evalu-
ate the significance of the biological states of the spe-
cific genes or pathways.
HRGPI

Multivariate analysis by the Cox proportional haz-
ard model was used to develop HRGPI which was con-
sidered as an independent prognostic factor of kidney
cancer. The prognostic index was constructed with Cox
regression coefficient. In this study, we divided the
patients into two groups, the high-risk group and the
low-risk group, according to the median of HRGPI.
Kaplan-Meier survival curves were drawn to investigate
the survival of two groups, and the receiver operating
characteristic (ROC) curve was used to evaluate the
specificity and sensitivity of this prognostic index. Fur-
thermore , univariate analysis was conducted to evaluate
the prognostic value of HRGPI and other clinicopatho-
logic factors, such as age, gender, grades and stages.
The survival package was used to explore the survival
prognosis of the prognostic index.
Correlation between hypoxia-related genes and
immune status

In this study, we evaluated the correlation be-
tween hypoxia-related genes and the infiltration of im-
mune cells, including type 2 T helper cells, regulatory
T cells, activated CD4 " T cells, natural killer cells,
etc. , by using ssGSEA™ ™ Frekeeel 2 =B 1y addition,
we evaluated the correlation between hypoxia-related
genes and inhibitory immune checkpoints such as PD-
CDI1, CTLA4, TGFBI, LAG3 and TIGIT.
Statistical analysis

The R package (version 3.5.3) was used to con-

duct the analyses in our study. The area under the

curve ( AUC) was calculated with the survivalROC
package. Independent t-test was used to analyze the
relationship between HRGPI and clinical factors, as
well as the relationship between HRGPI and mutant
genes. Wilcoxon test was used to analyze the difference
in HRGPI between groups. P <0.05 was considered as

statistically significant.

RESULTS

Identification of DEGs

In our study, DEGs in kidney cancer were analyzed
with the DESeq2 package. 893 tumor samples and 128
adjacent normal samples were analyzed. The results
showed that a total of 4,879 genes were up-regulated,
while 1,563 genes were down-regulated in kidney cancer
(Figure 1A and 1C). 28 up-regulated and 8 down-regula-
ted hypoxia-related DEGs were identified from a list of 99
hypoxia-related genes (Figure 1B and 1D). The role the
36 hypoxia-related DEGs play in the prognosis of patients
was also evaluated. As is shown in Figure 2, 28 hypoxia-
related DEGs were associated with the prognosis of kidney
cancer patients, in which 24 were high-risk genes for
death, whereas 4 were low-risk genes.
Identification of DETFs

A total of 318 transcription factors were download-
ed from the Cistrome dataset. After a comparison be-
tween up-regulated or down-regulated genes in kidney
cancer was made, 48 DETFs were recognized in kidney
cancer ( Figure 3). Spearman’ s correlation analysis
was conducted to discover the correlation between DE-
TFs and hypoxia-related genes ( Figure 4A). GO and
KEGG analyses were conducted to discover the func-
tional enrichment of the 75 DETFs and hypoxia-related
genes. KEGG signaling pathway analysis showed that
those genes were correlated to HIF-1 signaling path-
way, transcriptional misregulation in cancer, acute my-
eloid leukemia, central carbon metabolism in cancer,
and bladder cancer, respectively (Figure 4B). GO a-
nalysis indicated that the biological process was en-
riched in 4 clusters: metabolism pathway, immune-as-
sociated functions, kidney development as well as an-
glogenesis, cell proliferation and cell differentiation
(Figure 4C). 17 hypoxia-related genes were correlated
to DETFs (r, >0.5,P <0.05), including LDLR,
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A. The heatmap of DEGs in kidney cancer tissue and adjacent normal tissue; B. The heatmap of hypoxia-related DEGs in kidney canc-

er; C. The volcano plot of DEGs in kidney cancer tissue and adjacent normal tissue (up-regulated genes as indicated by the red dots,

while the down-regulated by the green dots) ; D. The volcano plot of hypoxia-related DEGs in kidney cancer tissue and adjacent normal

tissue (up-regulated genes as indicated by the red dots, while the down-regulated by the green dots) .

DEGs: Differentially expressed genes.
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Figure 2. Prognostic Values of Hypoxia Related DEGs

|
[T
:I.. f— —
- =
I.
-
f = —
E...
1)
Im
0
o]
o
- L
[ T—
| ]
——
Iy
——
HH
I ] ] !
1.0 1.1 1.2

Hazard ratio

In 28 hypoxia-related genes relevant to survival, 24 genes were high-risk genes and 4 genes were low-risk genes ( HR >1 was consid-

ered as high risk, and HR <1 was considered as low risk).

Abbreviations as indicated in Figure 1.
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Figure 3. Identification of DETFs
A. The heatmap of DETFs; B. The volcano plot of DETFs.
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Up-regulated transcription factor genes as indicated by the red dots, while the down-regulated by the green dots.

DETFs: Differentially expressed transcription factors.

ADM, ANLN, CDKN3, KIF20A, KIF4A, VEGFA,
ANGPTL4, PFKFB4, DDIT4, PYGL, TFAP2C, CA9,
TMEM30B, SLC16A1, P4HAI, and LDHA. After fil-
tering the highly interrelated genes, 7 hypoxia-related
genes, including SLCI16A1, VEGFA, KIF20A, CA9,
PFKFB4 , PYGL and TMEM30B, were maintained for
further analysis.
Calculation of HRGPI

HRGPI was developed with multivariate Cox re-
gression analysis. We built a prognostic signature to di-
vide the kidney cancer patients into two groups, the
high-risk group ( HRGPI > the median level ) and the
low-risk group ( HRGPI < the median level ). The for-
mula for evaluating the risk level was as follows; HRG-
PI = [ the expression level of SLC16A1 x0.0157681 ]
+ [ the expression level of VEGFA x 0. 0030014 ] +
[ the expression level of KIF204 x0.2133521 ] + [ the
expression level of CA9 x ( —0.001576) ] + [ the ex-
pression level of PFKFB4 x 0. 0700786 ] + [ the ex-
pression level of PYGL x ( —0.050195) ] + [ the ex-
pression level of TMEM30B x ( —0.043569) ]. Figure
5A indicated that the survival in the high-risk group
was lower than that in the low-risk group(P <0.001).
There are similar results in c¢ccRCC, PRCC, and
chRCC (Figure 5C, 5D and 5E). The AUC was 0. 754

(Figure 5B). In addition, Figure 6 indicated that the
survival time shortens as HRGPI increases. And the
heat map of 7 hypoxia-related genes including
SLCIGAI, VEGFA, KIF20A, CA9, PFKFB4, PYGL
and TMEM30B was also shown in Figure 6C.

Furthermore, we used univariate and multivariate
Cox regression analyses to evaluate the HRGPI as an
independent predictor of kidney cancer. The results
was proved to be affirmative when other clinical factors
(including age, gender, grade, clinical stage, stage
T, stage N and stage M) were also included in the
computational formula (Figure 7). Table 1 showed the
relationship of clinical factors to HRGPI and 7 hypoxia-
related genes; HRGPI was positively related to grade,
clinical stage and stage T. As is shown in Figure 8, a
high HRGPI was usually related to advanced stages of
kidney cancer, including grade 3 & 4, clinical stage
IIT & IV, and stage T3 & T4.
Functional enrichment analysis of hypoxia-related
genes

In this study, we analyzed the correlation between
hypoxia-related genes and immune cells as well as the
correlation between hypoxia-related genes and inhibito-
ry immune checkpoints. As is shown in Figure 9A | hy-

poxia-related genes were positively correlated to type 2
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Figure 4. Correlation between and Functional Enrichment Analysis of DETFs and Hypoxia Related Genes

A. Correlation between DETFs and hypoxia-related genes by Spearman’s correlation analysis ( DETFs as indicated by the blue dots,
up-regulated hypoxia-related DEGs by the red dots, and down-regulated hypoxia-related DEGs by the green dots; the genes were linked
by lines only when Spearman’ s rank correlation coefficient > 0.3 (a positive correlation as indicated by the red lines, while a negative
correlation by grey lines) ; B. KEGG analysis of DETFs and hypoxia-related genes showed that DETFs and hypoxia-related genes were
correlated to HIF-1 signaling pathway, transcriptional misregulation in cancer, acute myeloid leukemia, central carbon metabolism in
cancer, and bladder cancer, respectively; C. GO analysis of DETFs and hypoxia-related genes showed that the biological process was
enriched in 4 clusters including metabolism pathway (as indicated by the pink cluster) , immune-associated functions (as indicated by
the green cluster) , kidney development (as indicated by the yellow cluster) as well as angiogenesis, cell proliferation and cell differ-
entiation (as indicated by the blue cluster).

DETFs: Differentially expressed transcription factors; DEGs: Differentially expressed genes; HIF-1. Hypoxia-inducible factors 1.
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Figure 5. Evaluation of HRGPI

A. The survival in the high-risk group was lower than that in the low risk group according to HRGPI (P <0.001) ; B. The value of
AUC (0.754) was used to validate the model of HRGPI; C. The high ccRCC risk group showed lower survival compared with the low
ccRCC risk group (P <0.001) ; D. The high PRCC risk group showed lower survival compared with the low PRCC risk group (P <
0.001) ; E. The high chRCC risk group showed lower survival compared with the low chRCC risk group (P =0.036).

HRGPI; Hypoxia-related genes-based prognostic index; AUC: Area under the curve; ccRCC: Clear cell renal cell carcinoma; PRCC:

Papillary renal cell carcinoma; chRCC: Chromophobe renal cell carcinoma.
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A. HRGPI in high- and low-risk groups; B. Survival of kidney cancer patients in high- and low-risk group; C. Heat map of 7 hypoxia-
related genes including SLCI6A1, VEGFA, KIF20A, CA9, PFKFB4, PYGL and TMEM30B.

HRGPI. Hypoxia-related genes —based prognostic index.
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Figure 7. Univariate and Multivariate Analyses of Kidney Cancer
A. HRGPI is an independent predictor of kidney cancer by univariate analysis; B. HRGPI is an independent predictor of kidney cancer

by multivariate analysis.

Table 1. Relationship of Clinical Factors to HRGPI and 7 Hypoxia-Related Genes [ t-test ( P) ]

Variable Age( = 60/ < 60) Gender Grade Stage T M(M1/M0) N(N1/N0)
(male/female) (G4/G2-G3) (M-VI/1-1) (T3-T4/T1-T2)
SLCI6AL ~1.258 (0.210) 0.79 (0.431) 0.087 (0.930) ~1.842 (0.067) ~2.251 (0.026) ~0.962 (0.340) ~0.057 (0.955)
VEGFA 0.468 (0.640) 2.149 (0.033) 1.983 (0.049) 1.071 (0.286) 0.326 (0.745) 1.142 (0.258) 3.214 (0.006)
KIF20A 1.69 (0.093) -2.526 (0.012) -3.661 ( <0.001) -4.174 ( <0.001) —-3.754 ( <0.001) —-2.336 (0.024) —-2.451 (0.030)
CA9 0.248 (0.804) ~0.36 (0.720) 0.484 (0.629) 0.072 (0.943) 1.142 (0.255) 0.187 (0.852) ~0.339 (0.740)
PFKFB4 ~1.132 (0.259) 1.635 (0.104) ~1.206 (0.229) ~1.41 (0.160) ~1.259 (0.210) ~0.399 (0.692) ~0.344 (0.737)
PYGL —-0.351 (0.726) -0.314 (0.754) 0.478 (0.633) -0.395 (0.693) —-1.086 (0.279) 0.501 (0.618) 0.188 (0.854)
TMEM30B ~0.565 (0.573) ~1.222 (0.223) 0.546 (0.586) 0.701 (0.484) 0.419 (0.676) 0.422 (0.674) 2.355 (0.019)
HRGPI 1.438 (0.153) ~1.173 (0.242) ~2.763 (0.006) ~3.139 (0.002) ~3.02 (0.003) ~1.877 (0.068) ~1.568 (0.143)
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Figure 8. Relation of HRGPI to Grade, Clinical Stage and Stage T in Kidney Cancer
A. High HRGPI was related to grade 3 & 4 (P =0.006) ; B. High HRGPI was related to clinical stage III & IV (P =0.002); C.

High HRGPI was related to stage T3 & T4 (P =0.003).

T helper cells, regulatory T cells, activated CD4* T
cells, natural killer cells, effector memory CD8" T
cells, type 1 T helper cells, effector memory CD4 " T
As is
shown in Figure 9B, hypoxia-related genes were posi-

tively correlated to TGFBI, TIGIT, LAG3, CTLA4 and

cells, neutrophils, natural killer T cells, ete.

PDCDI.

GSEA analysis was then used to conduct the func-
tional enrichment analysis of hypoxia-related genes.
Hypoxia-related genes were positively correlated to hy-
poxia, tumor necrosis factor (TNF)-a signaling path-

way, IL2-STATS signaling pathway, [L6-JAK-STAT3
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signaling pathway, inflammatory response, interferon-

alpha response, interferon-gamma response, etc.
(Figure 9C). All these pathways were involved in in-
flammation.
Relationship between HRGPI and mutation land-
scape

In this study, we conducted a genetic alteration a-
nalysis of kidney cancer. The top 10 mutated genes in
kidney cancer were VHL, PBRMI, TTN, SETD2,
MUCI6, BAPI, KMT2C, TP53, LRP2 and PKHDI.

Missense mutation and frameshift mutation were the two

most common types of mutation ( Figure 10). We also

A Correlation of IIypoxia and Immune Cells

Type 2 Thelper cell -
Regulatory T eell

Activated CD4 Teell
Natural killer cell

Effecior memeory CDS Teell
Type 1 Thelper cell

analyzed the relationship between HRGPI and the mu-
tated genes. HRGPI was higher in patients with top 10
mutated genes than in patients with wildtype genes
(Figure 11A), and HRGPI in patients with VHL,
PBRM1I and BAPI were significantly higher than those
in patients with wildtype genes ( Figure 11B-D). Fur-
thermore, we also evaluated the relationship between
HRGPI and tumor mutation burden (TMB) in pan-kid-
ney cancer, ccRCC, PRCC and chRCC, respectively.
We found that a high HRGPI was related to high TMB
in pan-kidney cancer and ccRCC, respectively ( Figure
11E-H).
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Figure 9. Correlation between Hypoxia-Related Genes and Immune Cells/Inhibitory Immune Checkpoint Genes

A. Hypoxia related genes were positively correlated to type 2 T helper cells (r, =0.73,P <0.05), regulatory T cells (r, =0.66,P <
0.05), activated CD4 T cells (r, =0.65,P <0.05) , natural killer cells (r, =0.64,P <0.05), effector memory CD8 T cells (r, =
0.61,P<0.05), Type 1 T helper cells (r, =0.61,P <0.05) ; B. Hypoxia related genes were positively correlated to TGFgI, TIGIT,
LAG3, CTLA4 and PDCDI; C. GSEA analysis of hypoxia-related genes showed that hypoxia-related genes were positively correlated to

hypoxia, IL2-STATS signaling pathway, 1L6-JAK-STAT3 signaling pathway, inflammatory response, interferon-alpha response, inter-

feron-gamma response.
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Figure 10. Mutation Landscape of Kidney Cancer

A. The total mutation frequency in kidney cancer; B. The landscape of genetic alteration of kidney cancer.
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Figure 11. Relationship between HRGPI and Gene Mutation

The relation of HRGPI to top 10 mutated genes (P <0.001) ,VHL(P <0.001), PBRMI (P <0.001) and BAPI(P <0.001), re-
spectively, as indicated by the first row (Panel A, B, C and D) ; a hich HRGPI was related to high TMB in pan-kidney cancer (P =
0.014) and ccRCC (P =0.003) as indicated by the second row (Panel E, F, G and H).

TMB: Tumor mutation burden.
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DISCUSSION

Hypoxia is a common phenomenon of oxygen ten-

sion in solid cancers'"*’. Hypoxia plays important roles

in the development and metastasis of solid cancer'™ .
In the TME of cancer, hypoxia leads to dis-balance of
pro-angiogenic factors and anti-angiogenic factors, and
results in increased formation of blood vessels in the

[16]

tumor' "'. In addition, hypoxia induces cancer cell in-

vasion and migration by epithelial-mesenchymal transi-

17 . .
"7 Furthermore , hypoxia causes immune sup-

tion
pression and resistance, leading to immune surveil-
lance escape““. This oxygen tension activates a com-
plex network of signaling pathways such as NF-kB,
MAPK and JAK-STAT. Hypoxia in the tumor also con-
tributes to anti-cancer chemotherapy and radiothera-
py . So, it is important to investigate the roles and
mechanisms of hypoxia in solid cancer and propose new
strategies for cancer treatment.

Hypoxia is considered as a common biological fea-
ture in kidney cancer. The hypoxia factor, HIF-1, is a
critical factor in the carcinogenesis and progression of
kidney cancer™'. The 7 hypoxia-related genes
screened in our study were SLCI6Al, VEGFA,
KIF20A, CA9, PFKFB4, PYGL and TMEM30B. (D
SLC16A1

which could open to the extracellular matrix >, (2

encodes monocarboxylate transporter 1,

VEGFA modulates vasculogenesis, angiogenesis, endo-
thelial cell growth, and cell migration''. The expres-
sion of VEGFA is regulated by HIF-1 to invoke hypoxia
response elements'”'. @) KIF20A regulates ATPase
activity and protein kinase binding. @) CA9 belongs to
the family of zinc metalloenzymes involved in the bio-
logical functions of respiration, bone resorption, and
calcification. It is induced by hypoxia and regarded as
an endogenous biomarker in hypoxia cells'®’. ()
PFKFB4 is induced by hypoxia and is highly expressed
in kidney cancer, which is important in cancer cell
survival. (6) PYGL is an isoform that belongs to PYG
family and is involved in hypoxia-regulated cancer met-
abolic pathways. (7) TMEM30B participates in the ma-
intenance of the asymmetric distribution of phospholip-
ids. Thus, these 7 hypoxia-related genes were involved

in multiple mechanisms in kidney cancer.

Then, we established HRGPI to evaluate the sur-
vival of kidney cancer. HRGPI could function as an in-
dependent predictor of kidney cancer. High HRGPI
was found to be correlated to advanced stages of kidney
cancer. The high risk group (including pan-kidney
cancer, ccRCC, PRCC and chRCC patients) showed a
lower survival compared with the low risk group. HRG-
PI was, thus, inferred as a valuable diagnostic marker
in kidney cancer.

Furthermore, we investigated the mechanisms of
hypoxia in kidney cancer. Hypoxia is involved in the
inflammatory-related pathways, including TNF-o sig-
naling pathway, IL2-STATS signaling pathway, 1L6-
JAK-STATS3 signaling pathway, inflammatory response,
interferon-alpha response and interferon-gamma re-
sponse. As for inflammatory cells, hypoxia-related
genes are positively correlated to type 2 T helper cells,
regulatory T cells, activated CD4 " T cells, natural kil-
ler cells and effector memory CD8 * T cells. Our study
indicated that hypoxia is correlated to inflammatory sta-
tus in the TME of kidney cancer. Inflammatory path-
ways and inflammatory cells are proven to be involved
in the development and metastasis of kidney canc-
er'™' . The inflammatory mediators produced by im-
mune cells promote tumor cell proliferation, survival
and transformation. TNF-a signaling pathway is corre-
lated to the tumorigenesis in kidney cancer. TNF-a
stimulates epithelial-mesenchymal transition in kidney
cancer cells by increasing the production of matrix met-

[26]

alloproteinase 9 and E-cadherin The ligation of
TNF receptors activates VEGFR2 and ERK to promote
tumor cell proliferation'”’. JAK-STAT signaling path-
ways play pivotal roles in cytoplasmic signaling. STATs
could exert anti-apoptotic effects by up-regulating the
levels of survivin and B-cell lymphoma-extra large

[28]

(BelxI.) protein Moreover, we also discovered
the correlation between hypoxia-related genes and in-
hibitory immune checkpoints. Hypoxia-related genes
are correlated to TGFBI, TIGIT, LAG3, CTLA4 and
PDCDI. These immune checkpoints are biologically
and clinically functioning in kidney cancer. CTLA4 in-
hibits the costimulation via CD28 to decrease the func-

tion of inflammatory T cell response'”’. CTLA4 block-

ade could increase the anti-tumor effects of T cells.
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PD-1 is expressed in macrophages, B cells, and T

01 PD-1 and TIGIT cause immune escape in

cells
tumor cells to exacerbate kidney cancer. So, hypoxia
is related to immune response in kidney cancer as an
independent risk factor.

Lastly, we evaluated the correlation between
HRGPI and gene mutations. Hypoxia is related to ele-
vated genomic instability in many types of tumors, in-
cluding lung cancer, kidney cancer, cervix cancer,
etc. Hypoxic tumors exhibit characteristic driver-muta-
tion signatures. Tumor hypoxia would lead to aggres-
sive molecular characteristics. Hypoxia status is corre-
lated to poor clinical prognosis as well as resistance to
chemotherapy and radiotherapy. High HRGPI is corre-
lated to mutations in VHL, PBRM1 and BAPI. VHL is
a tumor suppressor gene leading to tumor cell prolifera-

PBRM1 and BAPI are driver

genes in kidney cancer'™ . HRGPI is also correlated to

tion and growth™'.

TMB in kidney cancer.
CONCLUSION

In this study, we have discovered the roles and
mechanisms of hypoxia in kidney cancer. Firstly, we
have recognized 7 hypoxia related genes of kidney
cancer. Secondly, we have developed HRGPI by muli-
There

chance of survival in the high-risk kidney cancer pa-

ivariate Cox regression analysis. is a lower
tients compared with the low-risk patients. HRGPI is
an independent predictor of kidney cancer, and is cor-
related to advanced stages of kidney cancer. Hypoxia-
related genes are correlated to inflammatory-related
pathways, inflammatory cells and inhibitory immune
checkpoints. These results indicate that hypoxia is re-
lated to immune response in kidney cancer. Lastly, we
have found that hypoxia is related to gene mutations in
kidney cancer. In conclusion, we have revealed that
hypoxia is a risk factor in kidney cancer which might
serve as a therapeutic target in the treatment of kidney

cancer in the future.
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